

Marko Opsenica, Katarina Nešović, Vesna Mišković-Stanković

University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia

#### Introduction

- > Hydrogels are biocompatible non-toxic materials with great sorption and controlled release capabilities
- > Poly(vinyl alcohol) (PVA) is a biocompatible synthetic polymer that can form highly elastic hydrogels
- Chitosan (CHI), a natural polymer, besides its antibacterical activity, is often used as a drug carrier
- > Graphene (Gr) provides mechanical support and improves thermal stability
- Silver nanoparticles (AgNPs), with their antibacterical and antifungal activity, can be incorporated inside synthesized hydrogels

# UV-vis spectroscopy

- UV-vis spectra of Ag/PVA/0.1CHI, Ag/PVA/0.5CHI and Ag/PVA/0.1CHI/Gr hydrogels were recorded in the wavelength range 300-650 nm
- > Maximum absorbance ( $\lambda_{max}$ ) originating from AgNPs was found at ~400 nm





Acknowledgements: This research was financed by the Ministry of Education, Science and Technological Development, Republic of Serbia (Contract No. 451-03-9/2021-14/200135 and 451-03-9/2021-14/200287).

## **Electrochemical synthesis**

- > PVA/0.1CHI, PVA/0.5CHI and PVA/0.1CHI/Gr hydrogels were obtained by freezing-thawing method and swollen in AgNO<sub>3</sub> and KNO<sub>3</sub> solutions
- Electrochemical synthesis of AgNPs was performed at different voltages: 50 V, 70 V, 90 V and 110 V



# Simulation of UV-vis spectra

- > The impact of AgNP diameter on the  $\lambda_{max}$  in UV-vis spectra was simulated via MiePlot program
- The absorbance values were simulated in the wavelength range 350-550 nm. depending on diameter of nanoparticles and the refractive index of the surrounding medium



# Conclusions

0.6

0.5

04

0.3

0.2

0.1

0

- > Ag/PVA/0.1CHI, Ag/PVA/0.5CHI and Ag/PVA/0.1CHI/Gr hydrogels were synthesized by applying different voltages (50 V, 70 V, 90 V and 110 V)
- > Maximum absorbance on UV-vis spectra of Ag/PVA/0.1CHI, Ag/PVA/0.5CHI and Ag/PVA/0.1CHI/Gr hydrogels was found at  $\lambda_{max} \approx 398-406$  nm
- > Impact of AgNPs diameters on  $\lambda_{max}$  was simulated via MiePlot program
- The optimal voltages for the AgNPs synthesis were 50 V and 90 V

#### 57<sup>th</sup> Meeting of the Serbian Chemical Society, Kragujevac (online), 18-19<sup>th</sup> June 2021

### **Refractive index**

- >Abbe refractometer was used to measure refractive index of dissolved hydrogels at 25° C and 589.3 nm wavelength
- > The refractive indices were also calculated for the investigated wavelength range (350-550 nm)

### **Determination AgNPs diameters**

- > Based on simulation results,  $\lambda_{max} = f(d)$  calibration curve was constructed
- > Diameters of nanoparticles in hydrogel samples were determinated based on these results



- Criteria for optimization is diameter of AgNPs, and the value of the maximum absorbance
- The optimal voltages for incorporation of AgNPs were determined to be 50 V and 90 V

| Sample           | <i>U</i> (V) | A <sub>max</sub> | λ <sub>max</sub> (nm) | <i>d</i> (nm) |
|------------------|--------------|------------------|-----------------------|---------------|
| Ag/PVA/0.1CHI    | 50           | 0.2763           | 404                   | 48.5          |
| Ag/PVA/0.1CHI    | 70           | 0.2152           | 404                   | 48.5          |
| Ag/PVA/0.1CHI    | 90           | 0.2095           | 402                   | 45.5          |
| Ag/PVA/0.1CHI    | 110          | 0.1701           | 406                   | 51.5          |
| Ag/PVA/0.5CHI    | 50           | 0.2058           | 398                   | 39.0          |
| Ag/PVA/0.5CHI    | 70           | 0.2173           | 406                   | 51.5          |
| Ag/PVA/0.5CHI    | 90           | 0.2928           | 406                   | 51.5          |
| Ag/PVA/0.5CHI    | 110          | 0.1825           | 406                   | 51.5          |
| Ag/PVA/0.1CHI/Gr | 90           | 0.2368           | 406                   | 51.5          |

#### References

600

[1] K. Nešović, A. Janković, T. Radetić, M. Vukašinović-Sekulić, V. Kojić, Lj. Živković, A. Perić-Grujić, K.Y. Rhee, V. Mišković-Stanković, European Polymer Journal 121 (2019) 109257.

[2] P. Laven, "MiePlot, A computer program for scattering of light from a sphere using Mie theory & the Debye series", <u>http://www.philiplaven.com/mieplot.htm</u>

