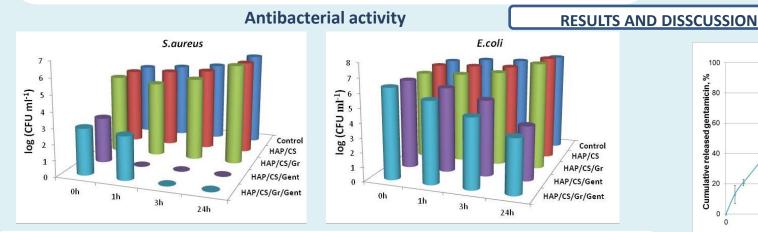


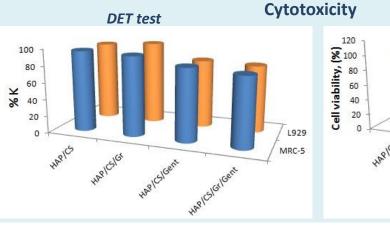
Bioactive Gentamicin-Eluting Composite Coatings on Titanium

Ana Janković, Milena Stevanović, Marija Đošić*, Maja Vukašinović-Sekulić, Vesna Kojić**, Svetlana Grujić, Ivana Matić-Bujagić, Vesna Mišković-Stanković

University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia *Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d'Eperea 86, Belgrade, Serbia **University of Novi Sad, Oncology Institute of Vojvodina, Faculty of Medicine, 21204 Sremska Kamenica, Serbia



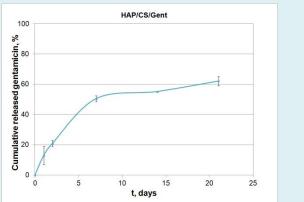
INTRODUCTION

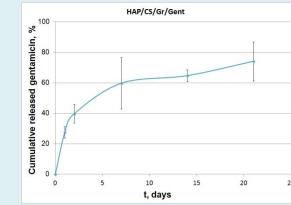

•Multifunctional implant coatings could serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.[1].

•Hydroxyapatite (HAP), natural polymer chitosan (CS), graphene (Gr), and antibiotic gentamicin (Gent) were employed for EPD process, to synthesize improved antibacterial composite coatings [1,2].

EPD was performed in a single step from multi-component aqueous suspensions.

More pronounced antibacterial effect of HAP/CS/Gent and HAP/CS/Gr/Gent against S.aureus, compared to E.coli.


MTT and DET results confirmed non-cytotoxicity of HAP/CS/Gent and HAP/CS/Gr/Gent coatings towards two different cell lines, fibroblast MRC-5 (human) and L929 (mouse).


Suspension composition: HAP powder Chitosan powder Gentamicin sulphate solution Graphene flakes Ti plate served as a working electrode

EXPERIMENTAL © EPD conditions:

low applied voltage, 5V for
 12 min
 from aqueous suspensions

Cumulative eluted gentamicin

Content of eluted gentamicin was comparable for HAP/CS/Gent and HAP/CS/Gr/Gent coatings, and in both cases burst release of the drug was evident.

ALP activity

FUNDING

9/2021-14/200287)

MRC-5 MRC-5 Control HARICS HARICS

HAP/CS/Gent and HAP/CS/Gr/Gent coatings showed significantly higher ALP activities compared to the positive control, as well as their non drug-eluting counterparts.

 European Commisson, project "Twinning to excel materials engineering for medical devices – ExcellMater" grant no. 952033, H2020-WIDESPREAD-2018-

•Ministry of Education, Science, and Technological Development of the

Republic of Serbia (Contract No. 451-03-9/2021-14/200135 and 451-03-

2020/H2020-WIDESPREAD-2020-5, 2020-2023

CONCLUSIONS

- The burst effect that is evident for drug release studies coincides well with the in vitro antibacterial assay .
- DET and MTT assays indicated low cytotoxicity against MRC-5 and L929 cell lines.
- HAP/CS/Gent and HAP/CS/Gr/Gent exhibited good antibacterial activity against S. aureus and E. coli indicating their high potential for future use in medical devices.
- ALP assay confirmed the ability of coatings to promote osteoblast differentiation. Osteogenic differentiation highly pronounced in the case of HAP/CS/Gent and HAP/CS/Gr/Gent.

MTT test

LITERATURE:

[1] M. Stevanović, M. Đošić, A. Janković, V. Kojić, M. Vukašinović-Sekulić, J. Stojanović, J. Odović, M. Crevar Sakač, K. Y. Rhee, V. Mišković-Stanković, Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium, ACS Biomaterials Science & Engineering 2018 4 (12),3994-4007.

L929

MRC-5

[2] M. Stevanović, M. Djošić, A. Janković, V. Kojić, M. Vukašinović-Sekulić, J. Stojanović, Jadranka Odović, Milkica Crevar Sakač, Rhee Kyong Yop, Vesna Mišković-Stanković, Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering, J. Biomed. Mater. Res. - Part A. (2020) 1–15.