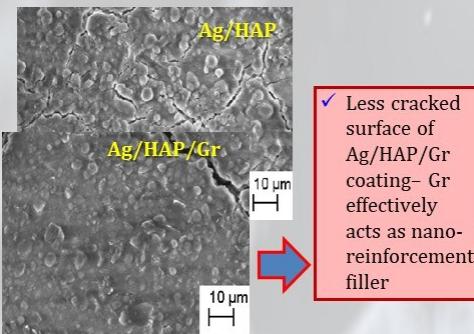


Milena Stevanović¹, Marija Đošić², Ana Janković¹, Katarina Nešović¹, and Vesna Mišković-Stanković¹

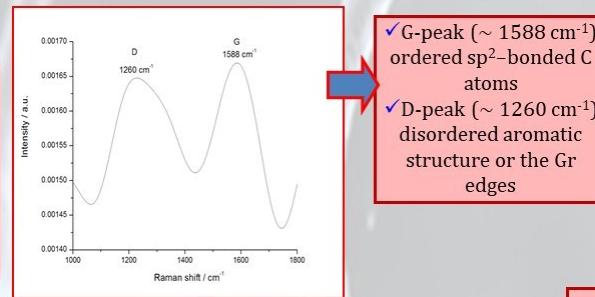
¹Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

²Institute for Technology of Nuclear and Other Mineral Raw Materials, 11000 Belgrade, Serbia

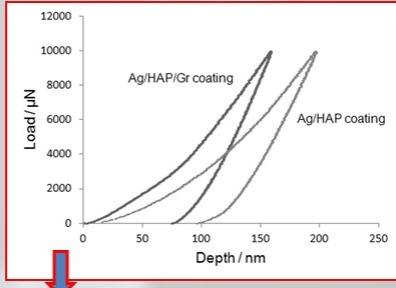
INTRODUCTION


- One approach to enhance the bioactivity and improve biocompatibility of bone implant is by depositing bioactive thin films on Ti implant surface.
- Hydroxyapatite (HAP) is the major component of natural bone tissues known for its excellent biocompatibility and it is widely used in various forms and shapes in tissue engineering [1].
- Bacterial infection poses high risk factor for implant rejection. Therefore, inorganic HAP coating is doped with antibacterial agents, such as silver.
- Graphene (Gr) is well known for its excellent mechanical properties and very high specific surface area. Using Gr nanosheets as nanofillers could significantly improve the mechanical properties of bioactive coatings, but also retain HAP original biocompatibility [2].
- Electrodeposition (EPD) emerges as an attractive technique due to its simple set-up and formation of uniform coatings, even on substrates of complex shape [3].
- The aim was to explore potential of implementing Gr as HAP reinforcement, and depositing novel nanoscale composite silver/hydroxyapatite/graphene (Ag/HAP/Gr) coatings on Ti substrate using EPD process.

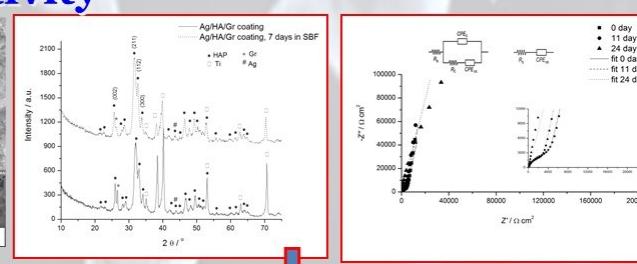
EXPERIMENTAL


- Ethanol suspensions (pH = 2.00):
 c (Ag/HAP) = 1 wt. %, (obtained by modified chemical precipitation technique);
 c (Gr) = 0.01 wt. % (average thickness of the graphene nanoflakes - 12 nm, 30~50 layers of Gr monolayers);
 c (Ag) = 0.4 ± 0.1 wt. %.
- Working electrode: Ti plates (25 x 10 x 0.25 mm for surface analysis, 40 x 20 x 0.25 mm for impedance measurements, and 10 x 5 x 0.25 mm for cell based assays)
- Deposition conditions: $U = 60$ V for 2 min.
- Characterization techniques: XRD, FE-SEM, Raman spectroscopy, EIS, MTT test (cytotoxicity) and antibacterial activity kinetics in suspension.

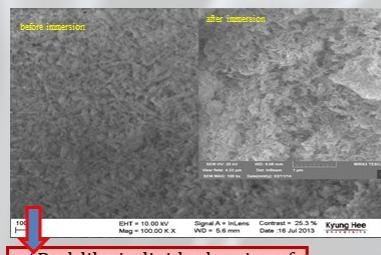
RESULTS AND DISCUSSION


FE-SEM

Raman spectroscopy

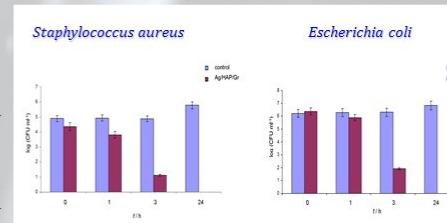


Nanoindentation test



✓ Ag/HAP/Gr coating - higher hardness (lower penetration depth) and higher reduced modulus (higher slope of the initial portion of the unloading curve)

EIS


Bioactivity

Cytotoxicity

Cell type	Peripheral blood mononuclear cells (PBMC)
Material	Ag/HAP/Gr coating
Cell viability (%)	79.6 ± 11.2
Classification	Non-cytotoxic*

Antibacterial effect

CONCLUSION

- Using EPD the biocomposite Ag/HAP/Gr coatings were successfully deposited on Ti substrate.
- An addition of Gr into Ag/HAP coating significantly improved its morphology, composition, mechanical properties, and bioactivity compared to graphene-free Ag/HAP coating.
- Ag/HAP/Gr coatings exhibited strong antibacterial activity against *S. aureus* TL and *E. coli*, therefore suppressing biofilm formation.
- Cytotoxicity - Ag/HAP/Gr coatings were classified as non-cytotoxic within the margin of error, against target PBMCs.

References

- M. Stevanović, M. Đošić, A. Janković, V. Kojić, M. Vukašinović-Sekulić, J. Stojanović, J. Odović, M. Crevar Sakač, K. Y. Rhee, V. Mišković-Stanković, *ACS Biomater. Sci. Eng.* 2018 4 (12), 3994-4007.
- A. Janković, Sanja Eraković, Maja Vukasinović-Sekulić, Vesna Mišković-Stanković, Soo Jin Park, Kyong Yop Rhee, *Prog. Mater. Sci.* 83 (2015).
- M. Stevanović, M. Đošić, A. Janković, V. Kojić, M. Vukašinović-Sekulić, J. Stojanović, Jadranka Odović, Milkica Crevar Sakač, Rhee Kyong Yop, Vesna Mišković-Stanković, *J. Biomed. Mater. Res. - Part A* 108(11) (2020) 2175-2189.

✓ NO BACTERIAL GROWTH - reduction of *S. aureus* TL and *E. coli*
✓ After 24 h both - no viable cells and visible colonies

